Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
Have you met this question in a real interview?
Yes
Example
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is
11
(i.e., 2 + 3 + 5 + 1 = 11).
Note
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
public class Solution {
/**
* @param triangle: a list of lists of integers.
* @return: An integer, minimum path sum.
*/
public int minimumTotal(ArrayList<ArrayList<Integer>> triangle) {
// write your code here
if(triangle == null || triangle.size() == 0) return 0;
int n = triangle.size();
int[][] record = new int[n][n];
for(int i = 0; i < n; i++){
record[n-1][i] = triangle.get(n-1).get(i);
}
for(int i = n - 2; i>= 0; i--){
ArrayList<Integer> tri = triangle.get(i);
for(int j = 0; j < tri.size(); j++){
record[i][j] = Math.min(tri.get(j) + record[i+1][j], tri.get(j) + record[i+1][j+1]);
}
}
return record[0][0];
}
}
No comments:
Post a Comment