Scramble String
29%
Accepted
Given a string
s1
, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of
s1 = "great"
: great
/ \
gr eat
/ \ / \
g r e at
/ \
a t
To scramble the string, we may choose any non-leaf node and swap its two children.
For example, if we choose the node
"gr"
and swap its two children, it produces a scrambled string "rgeat"
. rgeat
/ \
rg eat
/ \ / \
r g e at
/ \
a t
We say that
"rgeat"
is a scrambled string of "great"
.
Similarly, if we continue to swap the children of nodes
"eat"
and "at"
, it produces a scrambled string "rgtae"
. rgtae
/ \
rg tae
/ \ / \
r g ta e
/ \
t a
We say that
"rgtae"
is a scrambled string of "great"
.
Given two strings
Have you met this question in a real interview? s1
and s2
of the same length, determine if s2
is a scrambled string of s1
.
Yes
Example
Challenge
O(n3) time
public class Solution {
/**
* @param s1 A string
* @param s2 Another string
* @return whether s2 is a scrambled string of s1
*/
public boolean isScramble(String s1, String s2) {
// Write your code here
if(s1 == null || s2 == null || s1.length() != s2.length()) return false;
char[] arr1 = s1.toCharArray();
char[] arr2 = s2.toCharArray();
Arrays.sort(arr1);
Arrays.sort(arr2);
if(!new String(arr1).equals(new String(arr2))) return false;
else if(arr1.length == 1) return true;
for(int i = 0; i < s1.length()-1; i++){
if(isScramble(s1.substring(0, i+1), s1.substring(0, i+1)) && isScramble(s1.substring(i+1), s2.substring(i+1)) ||
isScramble(s1.substring(0, i+1), s2.substring(s2.length() - i - 1)) && isScramble(s1.substring(i+1), s2.substring(0, s2.length() - i - 1)))
return true;
}
return false;
}
}
public class Solution {
/**
* @param s1 A string
* @param s2 Another string
* @return whether s2 is a scrambled string of s1
*/
public boolean isScramble(String s1, String s2) {
// Write your code here
if(s1 == null || s2 == null || s1.length() != s2.length()) return false;
int n = s1.length();
boolean [][][] dp = new boolean[n][n][n+1];
for(int i = n - 1; i >= 0; i--){
for(int j = n - 1; j >= 0; j--){
for(int k = 1; k <= n - Math.max(j, i); k++){
if(s1.substring(i, k+i).equals(s2.substring(j, j+k)))
dp[i][j][k] = true;
else {
for(int l = 1; l < k; l++){
if(dp[i][j][l] && dp[i+l][j+l][k-l] || dp[i][j+k-l][l] && dp[i+l][j][k-l]){
dp[i][j][k] = true;
break;
}
}
}
}
}
}
return dp[0][0][n];
}
}
public class Solution {
/**
* @param s1 A string
* @param s2 Another string
* @return whether s2 is a scrambled string of s1
*/
public boolean isScramble(String s1, String s2) {
// Write your code here
if(s1 == null || s2 == null || s1.length() != s2.length()) return false;
int n = s1.length();
boolean [][][] dp = new boolean[n][n][n+1];
for(int i = n - 1; i >= 0; i--){
for(int j = n - 1; j >= 0; j--){
for(int k = 1; k <= n - Math.max(j, i); k++){
if(s1.substring(i, k+i).equals(s2.substring(j, j+k)))
dp[i][j][k] = true;
else {
for(int l = 1; l < k; l++){
if(dp[i][j][l] && dp[i+l][j+l][k-l] || dp[i][j+k-l][l] && dp[i+l][j][k-l]){
dp[i][j][k] = true;
break;
}
}
}
}
}
}
return dp[0][0][n];
}
}
No comments:
Post a Comment