Find Peak Element II
32%
Accepted
There is an integer matrix which has the following features:
- The numbers in adjacent positions are different.
- The matrix has n rows and m columns.
- For all i < m, A[0][i] < A[1][i] && A[n - 2][i] > A[n - 1][i].
- For all j < n, A[j][0] < A[j][1] && A[j][m - 2] > A[j][m - 1].
We define a position P is a peek if:
A[j][i] > A[j+1][i] && A[j][i] > A[j-1][i] && A[j][i] > A[j][i+1] && A[j][i] > A[j][i-1]
Find a peak element in this matrix. Return the index of the peak.
Have you met this question in a real interview?
Yes
Example
Given a matrix:
[
[1 ,2 ,3 ,6 ,5],
[16,41,23,22,6],
[15,17,24,21,7],
[14,18,19,20,10],
[13,14,11,10,9]
]
return index of 41 (which is
[1,1]
) or index of 24 (which is [2,2]
)
Note
The matrix may contains multiple peeks, find any of them.
Challenge
Solve it in O(n+m) time.
If you come up with an algorithm that you thought it is O(n log m) or O(m log n), can you prove it is actually O(n+m) or propose a similar but O(n+m) algorithm?
/**
* @param A: An integer matrix
* @return: The index of the peak
*/
public List<Integer> findPeakII(int[][] A) {
// write your code here
List<Integer> res = new ArrayList<Integer>();
if(A == null || A.length == 0 || A[0].length == 0) return res;
int i = 1, j = 1;
while(true){
if(isValid(A, i, j)){
res.add(i);
res.add(j);
return res;
}
if(A[i][j+1] > A[i+1][j]){
j++;
} else i++;
}
}
private boolean isValid(int[][] A, int i, int j){
if(i > 0 && i < A.length - 1 && j > 0 && j < A[0].length - 1){
if(A[i][j] > A[i-1][j] && A[i][j] > A[i+1][j] && A[i][j] > A[i][j+1] && A[i][j] > A[i][j-1]) return true;
}
return false;
}
}
the algorithm is wrong ...
ReplyDeletetake this counterexample...
[[5, 6, 7, 8, 2],
[10, 24, 25, 29, 12],
[11, 26, 27, 28, 13],
[0, 15, 16, 17, 1]]